Inference for Size Demography from Point Pattern Data using Integral Projection Models.

نویسندگان

  • Souparno Ghosh
  • Alan E Gelfand
  • James S Clark
چکیده

Population dynamics with regard to evolution of traits has typically been studied using matrix projection models (MPMs). Recently, to work with continuous traits, integral projection models (IPMs) have been proposed. Imitating the path with MPMs, IPMs are handled first with a fitting stage, then with a projection stage. Fitting these models has so far been done only with individual-level transition data. These data are used to estimate the demographic functions (survival, growth, fecundity) that comprise the kernel of the IPM specification. Then, the estimated kernel is iterated from an initial trait distribution to project steady state population behavior under this kernel. When trait distributions are observed over time, such an approach does not align projected distributions with these observed temporal benchmarks. The contribution here, focusing on size distributions, is to address this issue. Our concern is that the above approach introduces an inherent mismatch in scales. The redistribution kernel in the IPM proposes a mechanistic description of population level redistribution. A kernel of the same functional form, fitted to data at the individual level, would provide a mechanistic model for individual-level processes. Resulting parameter estimates and the associated estimated kernel are at the wrong scale and do not allow population-level interpretation. Our approach views the observed size distribution at a given time as a point pattern over a bounded interval. We build a three-stage hierarchical model to infer about the dynamic intensities used to explain the observed point patterns. This model is driven by a latent deterministic IPM and we introduce uncertainty by having the operating IPM vary around this deterministic specification. Further uncertainty arises in the realization of the point pattern given the operating IPM. Fitted within a Bayesian framework, such modeling enables full inference about all features of the model. Such dynamic modeling, optimized by fitting data observed over time, is better suited to projection. Exact Bayesian model fitting is very computationally challenging; we offer approximate strategies to facilitate computation. We illustrate with simulated data examples as well as well as a set of annual tree growth data from Duke Forest in North Carolina. A further example shows the benefit of our approach, in terms of projection, compared with the foregoing individual level fitting.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The overall efficiency and projection point in network DEA

Data Envelopment Analysis (DEA) is one of the best methods for measuring the efficiency and productivity of Decision Making Units (DMU). Evaluating the efficiency of DMUs which have two or several stages by using the conventional DEA models, is equal to consider them as black box. This method, omits the effect of intermediate measure on efficiency. Therefore, just the first network inputs and t...

متن کامل

Opportunities and challenges of Integral Projection Models for modelling host–parasite dynamics

Epidemiological dynamics are shaped by and may in turn shape host demography. These feedbacks can result in hard to predict patterns of disease incidence. Mathematical models that integrate infection and demography are consequently a key tool for informing expectations for disease burden and identifying effective measures for control. A major challenge is capturing the details of infection with...

متن کامل

Incorporating variability in simulations of seasonally forced phenology using integral projection models

Phenology models are becoming increasingly important tools to accurately predict how climate change will impact the life histories of organisms. We propose a class of integral projection phenology models derived from stochastic individual-based models of insect development and demography. Our derivation, which is based on the rate summation concept, produces integral projection models that capt...

متن کامل

Integral projection models for species with complex demography.

Matrix projection models occupy a central role in population and conservation biology. Matrix models divide a population into discrete classes, even if the structuring trait exhibits continuous variation (e.g., body size). The integral projection model (IPM) avoids discrete classes and potential artifacts from arbitrary class divisions, facilitates parsimonious modeling based on smooth relation...

متن کامل

Target detection Bridge Modelling using Point Cloud Segmentation Obtained from Photogrameric UAV

In recent years, great efforts have been made to generate 3D models of urban structures in photogrammetry and remote sensing. 3D reconstruction of the bridge, as one of the most important urban structures in transportation systems, has been neglected because of its geometric and structural complexity. Due to the UAV technology development in spatial data acquisition, in this study, the point cl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of agricultural, biological, and environmental statistics

دوره 17 4  شماره 

صفحات  -

تاریخ انتشار 2012